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Symmetry and the hydrodynamic
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(Received 4 April 2000 and in revised form 30 January 2001)

The problem of whether a spontaneous singularity can occur in finite time in an
incompressible inviscid fluid flow is addressed. As suggested by previous numerical
simulations, candidate flows are restricted to be invariant under the octahedral group
of symmetries and to have a compact vortex tube in the fundamental domain. It
is shown that in such a flow the image vorticity contributes strongly to the axial
strain rate on the fundamental in a way which is only weakly proportional to the
curvature of the vortex lines. Analysis of a model flow shows that axial strain rate
scales as the inverse square of the distance to the origin, and that the velocity field
forms a topological trap in which the vortex tube is accelerated towards the origin – a
degenerate critical point. Evidence from simulations supports these findings. These
features suggest that linear strain rate/vorticity coupling can occur in a finite-time
pointwise collapse of such symmetric flows.

1. Introduction
Whether a spontaneous singularity in an incompressible flow may develop in a finite

time is still an open question. More than just a mathematical problem of regularity, it
has relevance to the theory of turbulence and cascade mechanisms as well as possible
focusing applications.

The subtle task of differentiating between a flow in which a singularity actually sits
on the real time axis versus one with a pair of singularities a short distance away
in the complex plane is, however, virtually impossible in a computer solution of the
initial-value problem. Numerical evidence usually comes from fitting a flow variable
to some (tcrit − t)−γ behaviour, but the difference in behaviour of the functions 1/τ

and 1/
√
τ2 + ε2 where τ = tcrit − t comes only when τ is on the order of ε. If this

evidence is based on integration to a time T , 0 < T < tcrit, then ε can be assumed to
be less than tcrit − T to counter any blow-up conjecture.

A number of such candidate blow-up solutions of the Euler and Navier–Stokes
equations have, nevertheless, been proposed (Kerr 1993; Boratav & Pelz 1994; Grauer,
Marliani & Germaschewski 1998). These candidates should not be discarded as
suggested by the argument above, but should be used to motivate further analytic
studies.

In this paper, flows with the high symmetry assumed in one candidate solution
(Boratav & Pelz 1994) are analysed. In particular, the relation between vorticity and
axial strain rate is examined for flows invariant under the action of a particular
symmetry group. A simple vortex flow in this space is then constructed and analysed
further. For flows having octahedral symmetry and having a coherent vortex tube
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of mild curvature which intersects a plane of reflectional symmetry, it is found
that

positive strain rate in the direction of the vorticity is produced by the image
vorticity;
this strain rate remains positive as curvature goes to zero;
this strain rate increases as the inverse square of the distance to the origin; and
the image vorticity causes the fundamental vortex to accelerate towards the origin,
a degenerate critical point.

Strain rate and velocity fields from the numerical simulations confirm these findings.
The suggested behaviour is a localized self-similar collapse towards the origin ending
in finite-time blow-up.

This is not a proof of the existence of blow-up solutions. Evidence in this paper,
while being patterned after observations of numerical experiments, is from con-
structed models. It provides, however, an understanding of how in such flows a
coupling between strain rate and vorticity could be created and sustained through an
image/collapse scenario.

There is little doubt that flows with octahedral symmetry will be unstable to
perturbations which break the symmetry. The relationship of this work to real flows
and especially turbulent flows is thus quite weak. Other candidate flows, such as Kerr
(1993), Grauer et al. (1998), assume fewer symmetries and hence are more realistic. It
is not clear, however, how to analyse these flows other than data reduction from larger
computations. In this paper we pursue analysis in the less realistic high-symmetry
flows in hope of identifying and understanding one blow-up solution more completely.

Starting with existing theorems, the subject of finite-time singularities in incom-
pressible flow is reviewed and the present study motivated. Beale, Kato & Majda
(1984) showed that the time integral of |ω|max must become infinite in order for a
flow to lose regularity. From this, the standard scenario of |ω|max becoming infinite
as 1/(tcrit − t) is assumed. (Recently, Ohkitani & Gibbon (2000) have shown numeri-
cally, and Constantin (2000) and Malham (2000) analytically that a large class of
infinite-energy, two-dimensional forced flows become singular in finite time.) Then, as
Majda (1986) pointed out, if the vorticity is to blow up at a point, the eigenvector
associated with a positive eigenvalue of the strain rate must be roughly aligned with
the vorticity vector. From the vorticity equation, dω/dt = Sω, it is seen that nonlinear
growth occurs in this fashion. The wavelength of the singular region was linked to the
frequency through energy conservation by Constantin (1994); an algebraic blow-up
of vorticity must be accompanied by an algebraic decrease in length scale.

Phenomenologically, the picture is of a vortex tube being stretched by an axial
strain rate. Since exponential growth occurs when the strain rate is constant, strain
rate must also become singular in order for vorticity to follow (see Moffatt 2000). In
fact, for ω to scale as 1/(tcrit − t), axial strain rate must be linearly proportional to
vorticity. The one-way interaction of a vortex being stretched by neighbouring tubes
will not have such a coupling. An alternative is a ‘self-stretching’ scenario, in which
a vortex structure creates a strain-rate field about itself with proper direction and
coupling characteristics making the strain rate a function of the local vorticity.

Constantin (1994) showed through the analysis of the strain rate as a singular
integral operator of the vorticity, that for an isolated vortex tube to stretch itself,
the curvature of vortex lines must become infinite, leading to the theorem that if the
vorticity direction field remains coherent, there is no finite-time blow-up for finite
velocity (Constantin, Fefferman & Majda 1996). The radius of curvature of a vortex
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tube is the length that must go to zero for blow-up. In § 2 this singular integral
operator is examined more closely.

Rather than an isolated tube, a collection of vortex tubes linked by symmetry
may create self-stretching. Recall that the equations of motion are invariant under
translations, reflections and rotations. That is, a symmetry that exists in a flow at one
time will be preserved for all time after. The idea is to add enough viable symmetries
to construct a flow in which the strain rate acting axially on the fundamental vorticity
is produced by the image vorticity. Then, in this ‘image/collapse’ scenario, the problem
of blow-up moves to one of sustaining this arrangement while the length between
fundamental and image goes to zero.

Simulations of collapse of anti-parallel vortex tubes, one candidate for blow-up
(Kerr 1993; Pumir & Siggia 1990; Shelley, Meiron & Orszag 1993), make use of
reflectional symmetries. A symmetry plane parallel to a tube creates the anti-parallel
image. This symmetry seems to be attracting since vortex tubes with random alignment
tend to align in an anti-parallel fashion and collapse (Boratav, Pelz & Zabusky
1992). As pointed out by Constantin (1994), however, the same vortex-line curvature
restriction as in the isolated tube exists here. In § 3, it will be shown that reflectional
symmetries do not add new strain rate/vorticity coupling. Furthermore, it will be
shown that curvature of vortex lines tends to decrease when axial strain rate is large.

In § 4, a rotational symmetry is added to the reflectional ones to create an octahedral
symmetry. It is shown through analysis of the strain rate as an integral operator of
vorticity, that there exists a new, robust, strain rate/vorticity coupling which is positive
even when the curvature of the vortex tubes is zero, thus removing the curvature
restriction for blow-up. The velocity field under such symmetries is shown to be
highly restricted with a degenerate critical point at the origin. Using an approximate
model the velocity field induced by the images will be shown to ‘trap’ vorticity in the
symmetry plane and create an accelerating flow towards the origin.

In § 5, analysis of previous numerical simulations with octahedral symmetry is
performed. In the Biot-Savart vortex filament model, a linear coupling between strain
rate and local vorticity is demonstrated, and that this coupling exists up to a time
close to the critical time. In the field computations, a significant coupling is shown
to exist, but due to resolution limitations, the quantitative identification of the time
scaling is not possible. In both cases, the vortex structure appears to implode to the
origin in a locally self-similar manner.

Finally, § 6 contains a discussion on the ramifications of these results and directions
for further analysis.

2. Singular integral operator
The vorticity equation for an inviscid flow in an unbounded domain can be written

as the following integral:

d

dt
ω(x̄) = ω(x̄) PV

∫
D(x− x̄)ω(x) d3x (2.1)

where the strain rate is an integral operator of vorticity. This operator is of the
Calderon–Zygmund, classical strongly singular type (Neri 1970; Constantin 1994).
Integration is over all R3 for a flow with compact vorticity and no boundaries. In
three dimensions, the function D has homogeneity of degree-3 and is found through
differentiation of the Biot-Savart law

Si,j(x̄) =
3

8π
PV

∫
[εjkl(xi − x̄i) + εikl(xj − x̄j)](xk − x̄k)ωl(x)

d3x

|x− x̄|5 . (2.2)
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A specific example of this integral is the strain rate, S1,1 = u1,1, evaluated at the
point x̄ = (0, x̄2, x̄3)

u1,1(0, x̄2, x̄3) =
3

8π
PV

∫
x1[(x2 − x̄2)ω3(x)− (x3 − x̄3)ω2(x)]

[x2
1 + (x2 − x̄2)2 + (x3 − x̄3)2]5/2

d3x. (2.3)

One can see from the above expression that this is the strain rate which is needed
for nonlinear growth of ω1 (dω1/dt = ωiu1,i) in the plane. The integrand, however, is
a function of the other two components of vorticity, implying that the behaviour of
the local curvature of vortex lines is critical for the production of axial strain rate.
Indeed, if the flow is assumed to have reflectional symmetry about x1 = 0, to first
order the vorticity components near x = x̄ are ωi(x) = κi(x̄)ω1(x̄)x1 for i = 2, 3 and
where κi is the curvature of vortex lines at x = x̄. In order to keep zero homogeneity
of the singular integral, the curvature must scale as 1/x1 for blow-up on the plane.

3. Reflectional symmetry
Reflectional symmetry of vorticity about the xi = 0 Cartesian plane, i = 1, 2, 3, can

be written as ω(Iix) = −Iiω(x) where Ii is the identity matrix with the ith diagonal
element negative. Flows with reflectional symmetry with respect to a plane have only
normal vorticity in the plane. On the x1 = 0 plane, for example, ω1 is the only non-
zero component of vorticity, and since u1 is zero, the plane is also a stream surface.
Only u1,1, u2,2, u3,3, u2,3 and u3,2 are non-zero; hence, one of the eigenvectors of the
strain rate matrix is also normal to the plane. On plane x1 = 0, the vorticity equation
reduces to

∂ω1

∂t
+ u2ω1,2 + u3ω1,3 = ω1u1,1. (3.1)

With such an alignment of strain rate and vorticity it is natural to examine the
behaviour of vorticity on such a symmetry plane for possible blow-up. In the re-
mainder of this paper, the class of incompressible flows will be restricted to those
with reflectional symmetry, and the possible blow-up location will be restricted to
the symmetry plane. Flows will be further restricted to those which have at least one
compact vortex tube which intersects the x1 = 0 plane.

As can be seen in equation (2.3), it is clear that curvature must continually increase
to have a strain rate which scales as local vorticity. This point is examined more
closely by defining the local curvature on the symmetry plane. Curvature of a vector
field line is the arclength derivative of the unit tangent, ∂(ω/|ω|)/∂s. This reduces to
(0, ω2,1, ω3,1)/ω1 on the symmetry plane x1 = 0. The local curvature on this plane is
defined as κ2 = ω2,1/ω1 and κ3 = ω3,1/ω1.

The evolution of the local curvature of the vortex lines on the x1 = 0 plane can be
written

D

Dt

(
κ2

κ3

)
=

[
(u2,2 − 2u1,1) u2,3

u3,2 (u3,3 − 2u1,1)

](
κ2

κ3

)
+

(
u2,11

u3,11

)
. (3.2)

The first term on the right indicates that a positive out-of-plane strain rate, u1,1,
acts to decrease the curvature. This leads to a possible contradiction: curvature must
increase for u1,1 to increase, but large u1,1 tends to decrease curvature.

One way to maintain nonlinear growth of curvature is for an in-plane deformation
rate to be much larger than the out-of-plane strain rate. This will lead, however, to
sheet formation and non-localization which contributes to depletion of nonlinearity.

The argument above applies to an isolated vortex tube that is symmetric with
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respect to the x1 = 0 plane. Now the class of flows will be further restricted to those
with reflectional symmetry about the x2 = 0 plane also. If the tube is brought close
to the x2 = 0 reflectional plane, the oppositely signed image tube sets up a dipolar
arrangement which is subject to the Crow instability. As is well-known, the tubes
collapse and, if viscosity is present, reconnect by diffusion of ω2 across the x2 = 0
plane (Kida & Takaoka 1994).

The assumption that the flow is invariant under the action of these symmetries
leads to the definition of a ‘fundamental domain’ which is a subset of R3. For this
class of flows, the strain rate integral, (2.3), can be written over the fundamental
domain x2 > 0, x1 > 0. The strain rate at a point (0, x̄2, x̄3) is then written in the
fundamental domain as

u1,1(0, x̄2, x̄3) =
3

4π
PV

∫ {
x1[(x2 − x̄2)ω3(x) + (x3 − x̄3)ω2(x)]

[x2
1 + (x2 − x̄2)2 + (x3 − x̄3)2]5/2

+
x1[(x2 + x̄2)ω3(x) + (x3 − x̄3)ω2(x)]

[x2
1 + (x2 + x̄2)2 + (x3 − x̄3)2]5/2

}
d3x. (3.3)

These reflectional symmetries do not change the fact that the integrand contains only
ω2 and ω3 and local axial strain rate must be produced by curvature of local vorticity.
Hence, like in the case of the isolated tube, the behaviour of vortex line curvature is
still the critical issue.

There is a controversy as to whether this configuration leads to finite-time blow-up.
Filament computations of Siggia & Pumir (1985), Siggia (1985), Pumir & Siggia
(1987), and Waele & Aarts (1994) have shown that there is an algebraic blow-up
behaviour (with logarithmic corrections) during this collapse and up to the time when
the closest distance to the x2 = 0 plane is on the order of the filament core size
(Biot-Savart desingularization length). It was then seen in the field computations of
Pumir & Siggia (1990), and Shelley et al. (1993) that in that regime, core deformation
and sheet formation occurred and the out-of-plane strain rate decorrelated with the
local vorticity. Kerr (1993), however, using a specially filtered initial flow with high
curvature, found this blow-up behaviour to continue in time for as long as he could
compute.

The Taylor–Green vortex (Taylor & Green 1937) is a symmetric flow with reflec-
tional symmetry about all three planes. Addition of the third symmetry plane still
does not change the curvature restriction. Early work by Morf, Orszag & Frisch
(1980) suggested that there exists a spontaneous singularity, but further study by
Brachet et al. (1983, 1992) revealed only exponential behaviour.

The controversy over the dipolar-collapse problem may never be resolved due to the
‘ε < tcrit−T ’ argument discussed in the introduction. In the next section, a somewhat
unnatural symmetry is added to the problem which will allow a more natural strain
rate/vorticity coupling to occur.

4. Octahedral symmetry
The class of incompressible flows is finally restricted to those flows that have

reflectional symmetry about all three zero planes and a three-fold rotational symmetry
about the diagonal. Again, this class of flows must have a vortex tube which intersects
the x1 = 0 plane. This symmetry can be visualized as follows: along a line from the
origin through the point (1,1,1), the flow is invariant under a three-fold rotation by the
angle 2π/3. The rotational symmetry can be expressed as ω(Px) = Pω(x), PPP = I
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Figure 1. Two views of the fundamental domain, F: (a) the right pyramid which is used in
a Cartesian coordinate system; (b) a quadrilateral cone which is used in a spherical coordinate
system.

where P is the permutation P (x1, x2, x3) = (x3, x1, x2). Functions with the rotational
symmetry are said to be invariant under the action of the octahedral symmetry group.
Adding the reflections, it is known as the full octahedral symmetry group.

There are two reasons for such a severe restriction in the class of flows. The first,
which will be shown in § 4.1, is that a new source of axial strain rate is produced by
the images which is independent of the curvature of vortex lines. The second, which
will be addressed in § 4.2, is that the origin is a degenerate critical point and the
velocity field from the images causes a collapse towards the origin. This group is one
of the simplest that restricts the origin to be a degenerate critical point.

The domain of integration of the strain rate integral in equation (2.2) can be
reduced from R3 to a fundamental domain, F, which is 1/24th the volume when
the flow has symmetry. Let the full domain be a ball with radius r → ∞. The three
reflectional symmetries lead to a fundamental domain in the first octant only, which
for spherical geometry is a triangular cone with vertex at the origin and a spherical
triangle at radius r. Under the rotational symmetry, this fundamental domain can
be reduced by a third. The spherical triangle can be divided into three equal parts
by connecting great circles between the centroid and the three midpoints of the legs.
The fundamental domain is then a cone with a spherical quadrilateral. One vertex of
the quadrilateral is on the x3-axis. A Cartesian, rather than spherical, fundamental
domain can be constructed as a right pyramid x1 = [0, x3], x2 = [0, x3], x3 = [0, a]
a→∞. See figure 1 for views of each of these fundamental domains.

4.1. The out-of-plane strain rate

In writing the strain rate integral within the fundamental domain only, there will be
eight terms in the integrand from reflectional symmetries, and each of these terms
will have three parts from rotational symmetry. The out-of-plane strain rate at the
point x̄ = (0, x̄2, x̄3) can be written

u1,1(0, x̄2, x̄3) =
3

4π

∫
F
{ω1(x)D1(x̄, x) + ω2(x)[D∗2(x̄, x) +D2(x̄, x)]

+ω3(x)[D∗3(x̄, x) +D3(x̄, x)]} d3x (4.1)
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where the five kernels are

D1(0, x̄2, x̄3; x)=
x2(x3 − x̄2)

[x2
2 + (x3 − x̄2)2 + (x1 − x̄3)2]5/2

+
x2(x3 − x̄2)

[x2
2 + (x3 − x̄2)2 + (x1 + x̄3)2]5/2

+
x2(x3 + x̄2)

[x2
2 + (x3 + x̄2)2 + (x1 − x̄3)2]5/2

+
x2(x3 + x̄2)

[x2
2 + (x3 + x̄2)2 + (x1 + x̄3)2]5/2

− x3(x2 − x̄3)

[x2
3 + (x1 − x̄2)2 + (x2 − x̄3)2]5/2

− x3(x2 − x̄3)

[x2
3 + (x1 + x̄2)2 + (x2 − x̄3)2]5/2

− x3(x2 + x̄3)

[x2
3 + (x1 − x̄2)2 + (x2 + x̄3)2]5/2

− x3(x2 + x̄3)

[x2
3 + (x1 + x̄2)2 + (x2 + x̄3)2]5/2

,

(4.2)

D∗2(0, x̄2, x̄3; x)=− x1(x3 − x̄3)

[x2
1 + (x2 − x̄2)2 + (x3 − x̄3)2]5/2

− x1(x3 − x̄3)

[x2
1 + (x2 + x̄2)2 + (x3 − x̄3)2]5/2

− x1(x3 + x̄3)

[x2
1 + (x2 − x̄2)2 + (x3 + x̄3)2]5/2

− x1(x3 + x̄3)

[x2
1 + (x2 + x̄2)2 + (x3 + x̄3)2]5/2

,

(4.3)

D2(0, x̄2, x̄3; x)=
x3(x1 − x̄2)

[x2
3 + (x1 − x̄2)2 + (x2 − x̄3)2]5/2

+
x3(x1 − x̄2)

[x2
3 + (x1 − x̄2)2 + (x2 + x̄3)2]5/2

+
x3(x1 + x̄2)

[x2
3 + (x1 + x̄2)2 + (x2 − x̄3)2]5/2

+
x3(x1 + x̄2)

[x2
3 + (x1 + x̄2)2 + (x2 + x̄3)2]5/2

,

(4.4)

D∗3(0, x̄2, x̄3; x)=
x1(x2 − x̄2)

[x2
1 + (x2 − x̄2)2 + (x3 − x̄3)2]5/2

+
x1(x2 − x̄2)

[x2
1 + (x2 − x̄2)2 + (x3 + x̄3)2]5/2

+
x1(x2 + x̄2)

[x2
1 + (x2 + x̄2)2 + (x3 − x̄3)2]5/2

+
x1(x2 + x̄2)

[x2
1 + (x2 + x̄2)2 + (x3 + x̄3)2]5/2

,

(4.5)

D3(0, x̄2, x̄3; x)=− x2(x1 − x̄3)

[x2
2 + (x3 − x̄2)2 + (x1 − x̄3)2]5/2

− x2(x1 − x̄3)

[x2
2 + (x3 + x̄2)2 + (x1 − x̄3)2]5/2

− x2(x1 + x̄3)

[x2
2 + (x3 − x̄2)2 + (x1 + x̄3)2]5/2

− x2(x1 + x̄3)

[x2
2 + (x3 + x̄2)2 + (x1 + x̄3)2]5/2

.

(4.6)

The important points of the above (regrettably long) expressions are that ω1(x) is
now present in the integrand of equation (4.2) and that the associated kernel, D1,
which comes solely from the rotated images, is smooth in the fundamental domain
as long as (x̄2 < x̄3). The smooth kernels D2 and D3 are also from rotated images,
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Figure 2. Isosurfaces of the D1(x̄, x) kernel in the fundamental cone. Contour levels are 0, 1, 2, 4,
and 8 from dark to light with [−0.5, 20] being the range. The region of negative D1 is to the left
of the black surface. The square marks the spot where (0, x̄2, x̄3) and x̄2 = 0.1 and x̄3 = 0.5. Note
that D1 is a weak function of x1 implying that a mildly curved vortex tube centred at (0, x̄2, x̄3) will
be immersed in a nearly constant positive kernel field. Similar positive fields are found as x̄3/x̄2 is
varied.

whereas D∗2 and D∗3 contain the original singular kernels and the contributions from
reflected images.

The kernel D1 is positive under certain conditions. At x = (0, x̄2, x̄3) it is

D1 = 2(x̄2
3 − x̄2

2)

[
1

[x̄2
2 + (x̄3 − x̄2)2 + x̄2

3]
5/2
− 1

[x̄2
2 + (x̄3 + x̄2)2 + x̄2

3]
5/2

]
(4.7)

which is positive if x̄3 > x̄2. The isosurfaces of the kernel D1 are plotted in figure 2
in the fundamental conical domain. The square marks the spot (0, x̄2, x̄3). In this
example x̄2 = 0.1 and x̄3 = 0.5. Similarly shaped positive surfaces occur for any x̄2

and x̄3 provided x̄2 < x̄3. Contour levels are 0, 1, 2, 4 and 8 from dark to light. The
only negative volume is to the left of the black surface.

Recall that the class of flows under consideration has a compact vortex tube. Let
this vortex tube intersect the x1 = 0 plane normally with its centroid at (0, x̄2, x̄3).
Define a length scale, L, as the distance from the centroid of the vortex tube to the

origin (L =
√
x̄2

2 + x̄2
3). The vortex tube is assumed to have mild curvature, ρ > L.

Following the vortex lines, the tube then extends across the fundamental domain and
exits on the opposite side boundary, much like the positive level sets of D1 in figure 2.
The tube enters the other rotational boundary oriented mostly in the x3-direction.
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Figure 3. Plots of the space curve (x1 = s − ε2s3/6 + · · ·, x2 = cos ν + εs2 cos (µ)/2 + · · ·,
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Because the rotational images are at a distance proportional to L from (0, x̄2, x̄3),
their influence on the strain rate at this point can be estimated through the vortex
filament approximation. The integral∫

[D1(x, x̄)ω1(x) +D2(x, x̄)ω2(x) +D3(x, x̄)ω3(x)] d3x (4.8)

over the fundamental domain is approximated by a one-dimensional integral over the
arclength of a space curve x(s) expanded about the symmetry plane. Letting the radius
of curvature and the torsion on the symmetry plane be ρ and τ, and the arclength
derivative be denoted by an overdot, the position of the vortex filament has the form

x1 = ρ

[(
s

ρ

)
− 1

6

(
s

ρ

)3

+ O

(
s

ρ

)5
]
,

x2 = x̄2 + ρ2

[
1

2

(
s

ρ

)2

− ρρ̈+ 1

24

(
s

ρ

)4
]
− ρ3

[
ρ2τ̇

24

(
s

ρ

)4
]

+ O

(
ρ
s

ρ

)6

,

x3 = x̄3 + ρ3

[
1

2

(
s

ρ

)2

− ρρ̈+ 1

24

(
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(4.9)

where ρ2 and ρ3 are the radii of curvature, ρ2 = ρ2
2 + ρ2

3. Lengths are then normalized
with respect to L, the scaled curvature ε = L/ρ is defined, and two angles µ and ν
are defined as (x̄2, x̄3) = (cos ν, sin ν) and (ρ2, ρ3) = ρ(cos µ, sin µ). Figure 3 shows the
position of the filament and images in the first octant and the whole plane.

The axial strain rate u1,1 at the point (0, x̄2, x̄3) from the rotated images only can
be expanded in powers of ε (scaled curvature) as

u
image
1,1 =

Γ

L2
[c0(ν) + c1(µ, ν)ε+ O(ε2)]. (4.10)

The functions c0 and c1 are shown in figure 4 for π/4 6 ν 6 π/2; the solid line is c0

and the broken lines are c1 evaluated at µ = {0, π/4, π/2}. Integration is to infinity,
but since the integrands are highly localized (scaling as |x/L|−5), integration across the
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Figure 4. The zeroth-, c0(ν), and first-order, c1(µ, ν), terms in the expansion of out-of-plane strain
rate on the symmetry plane due to images only. The integral is estimated using the filament
approximation and a space curve expansion. The expansion parameter is ε = L/ρ. The angles ν
and µ describe the intersection of the filament with the symmetry plane and direction of curvature,
respectively.

fundamental domain produces the major contribution to the integral. The function c0

is the strain rate produced by the rotational images of a straight filament. It is positive
for x̄3 > x̄2. The effect of mild curvature can be seen in the function c1(µ, ν). Positive
curvature causes the filament to move away from (0, x̄2, x̄3) more quickly than if it
is straight. The contribution to the strain rate is, therefore, generally negative. Even
in the worst case which occurs when ρ3 = ρ (µ = π/2), the strain rate is positive for
π/4 < ν < π/2 if the scaled curvature, ε, is less than one half. It is interesting to note
that for µ < π/2, curvature has a positive contribution to the strain rate for some
range of ν, e.g. for µ = π/4, c1 > 0 for ν > 4π/10. This is due to the fact that strain
rate is larger in front of a wider dipole. In the next section where numerical evidence
is given, curvature is indeed mild and ν and µ are in the range where curvature
enhances positive strain rate.

There are two results from this filament analysis. First is that the strain rate from
the images is positive in the limit of zero curvature provided x̄3 > x̄2. Recall that when
curvature is zero, the strain rate produced by the fundamental vortex and reflections
is zero.

The other result is that the strain rate from the rotational images scales as L−2.
If the vortex tube were to move towards the origin by a factor α, L → αL, and the
tube remains coherent with mild (scaled) curvature, the axial strain rate experienced
by the tube on the symmetry plane from the images would increase by the inverse
square, u1,1 → u1,1/α

2.
Of course, the evidence above is from a static filament model. It will give the

leading behaviour only if core size is small with respect to interfilament distance and
radius of curvature and if the dynamic behaviour is self-similar.

While the filament/space curve expansion is not entirely appropriate for the esti-
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mation of the strain rate due to the singular terms because of core deformation,
it is nevertheless interesting to examine the local strain rate integral under this
approximation. Letting ρθ = s, the integral of u1,1 on the plane due to the fundamental
vortex only becomes

u
singular
1,1 = Γ τ̇

∫ θmax

0

[ 1
24
θ + O(θ3)] dθ. (4.11)

The fact that a plane filament does not strain itself is borne out by the torsion mul-
tiplicative factor. (Note that torsion is an odd function with respect to the symmetry
plane, and arclength derivative of torsion is the relevant parameter.) The integrand
is not singular but a smooth non-local function of θ. The arclength derivative of the
torsion must become singular in order for the axial strain rate to become singular
from local effects.

The in-plane strain rates u2,2 and u3,3 can be examined in a manner similar to
that of u1,1. For the same class of flows and x̄3 > x̄2 the kernels analogous to D1

are smooth and negative throughout the fundamental domain. This suggests that the
normal direction is the eigenvector of the largest (and perhaps the only) positive
eigenvalue of the rate of strain matrix.

In summary, for a flow invariant under the action of the full octahedral symmetry
group and a vortex tube intersecting a symmetry plane at a distance L from the
origin, the axial strain on the vortex at the symmetry plane has a component from
the rotational images which is positive for a mildly curved tube and scales like ΓL−2.

4.2. The velocity field and the geometry of the critical point

In the previous subsection it was shown that rotated images of the coherent vortex
tube provide a source of axial strain. Reliance on the images for blow-up then requires
them to continually move closer to the fundamental, or for the whole configuration
to move towards the origin in such a way that the vortex orientation is preserved
(L→ 0). This can be accomplished through a self-similar collapse to the origin. Note
that the collapse can be asymptotic in nature as long as a suitable matching region
can connect an outer flow with the inner collapse. In this section the velocity field
and the geometry of the critical point will be examined for flows with full octahedral
symmetry.

The most general incompressible flow with this symmetry is severely restricted
around the origin. The assumption of reflectional symmetry on the three zero planes
restricts the axes to be streamlines. Applying incompressibility, the origin becomes a
hyperbolic critical point, and the axes are the stable and unstable directions. Enforcing
the three-fold rotational symmetry about the diagonal, further restricts all axes to be
similar. The origin thus becomes a degenerate critical point.

In a Taylor expansion of the velocity about the origin, the first-order terms are
zero from the degeneracy. The expansion is odd in r so the first non-zero terms will
be of third order. Of the ten possible coefficients involved in the expansion at third
order, only two are independent and can be separated with a toroidal and poloidal
decomposition.

The poloidal (radial) velocity has the form [x4 +y4 + z4−3(x2y2 +y2z2 + z2x2)]/r+
O(r5). This function has oppositely signed extrema on the axes and diagonals, which
means that the six axes are the incoming streamlines and the eight diagonals are the
outgoing streamlines (or vice versa depending on the sign of the multiplying coeffi-
cient). The acute angle between incoming and outgoing streamlines is arccos (1/

√
3).
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Figure 5. The zeroth-, vr0(ν), and first-order, vr1(µ, ν), terms in the expansion of radial velocity
on the symmetry plane. The velocity is estimated using the filament approximation for non-local
vorticity and local induction approximation for local effects. The expansion parameter is ε = L/ρ.
The angles ν and µ describe the intersection of the filament with the symmetry plane and direction
of curvature, respectively. The core size is L/5.

That this angle is acute means that if collapse to the origin does occur then the local
radius of curvature of the vortex lines will go to zero.

The toroidal term can be expressed using the radial vorticity, which has the form
xyz/r+O(r4). This means that the streamlines on the sphere are closed and concentric,
with the centre at the diagonal point. The flow is confined to the octant and swirls
around the diagonal. The swirl in adjacent octants is oppositely signed.

While this expansion is valid only close to the origin, the idea of a collapse in an
incompressible flow can be visualized. The down-welling flow is near the axes and a
swirling up-welling flow is near the diagonals.

The velocity field at a distance L from the origin is certainly not well represented
by the first term of the Taylor series given above. To examine the velocity there, the
filament model of the previous subsection is used. As before the rotational images
will be represented as filaments. The reflectional images will also be represented by
filaments, and the local induction approximation will be used for the velocity of the
fundamental.

The radial and azimuthal velocities, ur and uθ at the point (0, x̄2, x̄3) can again be
expanded in powers of ε from the Biot-Savart law with octahedral symmetry as

ur =
Γ

L
[vr0(ν) + vr1(µ, ν)ε+ O(ε2)], uθ =

Γ

L
[vθ0(ν) + vθ1(µ, ν)ε+ O(ε2)]. (4.12)

The functions are shown in figures 5 and 6 for π/4 6 ν 6 π/2; the solid line
is the zeroth-order term and the broken lines are the first-order terms evaluated at
µ = 0, π/4, π/2. Integration is to infinity, and the integrands are again highly localized.
The core size is kept fixed at L/5, but results depend only weakly on this parameter.

Looking first at the radial velocity, a straight filament produces only a velocity
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Figure 6. The zeroth-, vθ0(ν), and first-order, vθ1(µ, ν), terms in the expansion of
azimuthal velocity on the symmetry plane.

towards the origin. The general effect of curvature is to add positive velocity, but
there is a range of µ where there is a negative contribution.

The leading behaviour of azimuthal velocity is positive for lower values of ν and
negative for higher values. Note that for a dipole or quadrupole alone, the azimuthal
velocity is always negative. The positive contribution is due to the rotational images,
particularly the jet between the image dipoles. The first-order curvature effect adds
little to this behaviour.

This model thus predicts a certain angular location of the filament, ν ≈ 0.43π,
where the velocity is only towards the origin. The filament will accelerate since the
velocity there has the form L̇ ∼ 1/L with the solution L ∼ √tc − t. The critical angle
is attracting since the derivative of azimuthal velocity with respect to ν is negative
there.

This model predicts that a mildly curved filament placed near this point in this
symmetry space is trapped to move towards the origin. The fact that ν is close to π/2
means that the fundamental vortex tube and image across the x2 = 0 plane form a
dipole and excite the radial velocity mode with down-welling at the axes. The three
tubes in the first octant moving away radially from the origin excite the toroidal
mode.

5. Evidence from numerical simulation
In the last section, the coupling of the strain rate and the vorticity on the symmetry

plane was shown for flows with octahedral symmetry. Such a flow was constructed
simply by having a vortex tube with mild curvature intersect the x1 = 0 plane. In this
section, previous simulations with such a symmetry will be analysed. In particular,
the strain rate kernels will be examined to see the extent of the coupling.
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Figure 7. Isosurfaces of vorticity magnitude for t = 1.5 in the fundamental pyramid. Contours are
21, 17, 11 for light to dark with 23 being the overall maximum. There is a slight dusting as the
isosurface comes through the rotational boundary.

5.1. Pseudo-spectral simulations

In the numerical studies of Boratav & Pelz (1994), an initial flow of the form

ω1 = 3 cos x1 (sin 3x2 sin x3 + sin x2 sin 3x3)− 2 cos 3x1 sin x2 sin x3 (5.1)

evolves into a collapsing ‘dodecapole’ arrangement as conjectured in the previous
section. This highly symmetric flow was developed by Kida (1985) in order to increase
the ratio of range of scales in a turbulent flow to the computational resources. It
collapses towards the origin in a visually self-similar way up to the time when the
simulation can no longer be trusted. The critical time is estimated to be about 2, and
the time when the width of the analyticity strip equals the grid size is t = 1.4 (for an
effective resolution of 12003 Fourier modes in an Euler simulation). Data collected
at times much beyond this time should be considered only in the qualitative sense.
The energy spectrum for times up to t = 1.4 tends to k−3. The vorticity |ω|∞ has a
1/(tcrit − t) behaviour for 2–3 orders of magnitude albeit for times extending into the
critical range. The strain rate/vorticity coupling of this flow for t = 1.5 is examined
below.

In figure 7 isosurfaces of vorticity magnitude are shown in the fundamental domain
only. The maximum vorticity is 23 and the contours are 21, 17, and 11 from light
to dark. The vortex tube is coherent as it intersects the x1 = 0 plane. The typical
head/tail arrangement can be seen in the contours of the cross-section. It extends
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Figure 8. Isosurfaces of the strain rate integrand: D1(x = 0, x̄2, x̄3; x)ω1(x) in the fundamental
domain. Contours are 64, 32, 16 for light to dark with 89 being the overall maximum.

from the x1 = 0 plane normally with decreasing magnitude but mild curvature. With
reference to the preceding section, the angle ν is close to π/2 and µ is close to zero.
Lower isosurfaces show the tube exiting the far rotational boundary and re-entering
the other rotational boundary. There is another vortex structure near the point
(π/2, π/2, π/2), but this is not shown. The point with maximum positive vorticity is
(0, 7, 21)(π/128), and this will be defined to be the point (0, x̄2, x̄3).

To understand the extent of the coupling, the field D1(0, x̄2, x̄3; x)ω1(x), as defined
in equation (4.3), for the fundamental domain is shown in figure 8. The maximum
value in the field is 89, and the isosurfaces are 64, 32, and 16 from light to dark. The
integrand is positive and the contours envelop the vortex tube shown in figure 7. The
large degree of positive correlation between the D1 and ω1(x) fields suggests that a
large axial strain rate is produced by the rotational images.

To illustrate the strain rate budget as defined in equation (4.2), four contour plots
are shown in figure 9. The time is again 1.5. The area shown is a small part of the
plane x1 = 0 for which 0 6 x2 6 5/32 and 3/16 6 x3 6 5/16 expressed in fractions
of domain length.

Figure 9(a) shows the contours of ω1; (b) shows a contour plot of out-of-plane
strain rate u1,1 that is acting on the vorticity. Contours are ragged indicating that
as gradients get steeper, lack of resolution will soon prevent further integration. In
the region of ‘high’ vorticity, defined by ω1 > 20, the strain rate is nearly vertically
stratified. It increases in the vertical direction from about 1.8 to 2.7.
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Figure 9. Contour plots from a pseudo-spectral simulation for time 1.5, x1 = 0, 0 6 x2 6 5/32,
3/16 6 x3 6 5/16: (a) vorticity ω1, (b) axial strain rate u1,1, (c) axial strain rate due to the
fundamental and reflectional vorticity, and (d) axial strain rate due to rotational image vorticity.



Symmetry and the hydrodynamic blow-up problem 315

Figure 9(c) shows contours of the out-of-plane strain rate due to the fundamental
vorticity and reflectional images. This is found by integrating D∗2ω2 +D∗3ω3 as defined
in equations (4.4) and (4.6). Contours are smoother due to integration. Figure 9(d)
shows contours of out-of-plane strain rate due to the rotational image vorticity, or
the integration of D1ω1 +D2ω2 +D3ω3 as defined in equations (4.3), (4.5) and (4.7).

In the region of high vorticity, the local and reflection strain rate contours are
also horizontally stratified with a range of about 0.03 to 1.7 increasing upwards. The
contours of strain rate from the rotational images are very different. In the high-
vorticity region, the distribution is more constant ranging from 1 to 1.5 and the strain
rate increases to the lower right. At this time, the rotational images produce a slightly
higher integrated strain rate over the high-vorticity region than the fundamental and
reflectional images.

A coupling coefficient can be defined as the ratio of strain rate to vorticity in the
region of high vorticity on the plane. If the coefficient is constant in time, then there
is a linear coupling between vorticity and strain rate. If it persists, then blow-up will
occur in a finite time. At the time of 1.5, the coupling coefficient is about 1/10. At
a time of 1.6 (not shown), it is still about a tenth, but the ratio of rotational to
fundamental and reflectional contributions is larger than at t = 1.5.

Because the raggedness of the derivative fields is symptomatic of the progressive
loss of resolution with time, quantitative analysis of scaling is useless. The main result
is that at the times analysed, in the region where the coherent vortex tube intersects
the reflectional plane, a significant part of the axial strain rate budget comes from
the rotational vorticity.

A view of the velocity field on the symmetry plane is seen in figure 10. The vorticity
contours are overlaid with velocity vectors and a few streamlines. There are a number
of interesting points here. All streamlines end at the stable focus. A strong horizontal
velocity is created by the rotational image vorticity, and it causes a nearly radial
separatrix to form. The focus is not at the centre of the vortex, but is shifted due
to the flow produced by the images. Nearly all of the vortex is immersed in a flow
towards the origin. This figure supports what was found in the filament model in the
last section: that the vortex is trapped and collapses towards the origin.

5.2. Vortex filament calculations

A simulation of the six dipole configuration was done with a standard vortex filament
method by Pelz (1997). Results were similar to the pseudo-spectral computations;
however, because the filament method is effectively one-dimensional, integration to
times much closer to the critical time can be accomplished, and the locally self-similar
solution can be analysed quantitatively. The strain rate/vorticity coupling for this
simulation is examined below.

The data from the simulation are the position of the endpoints of the piecewise
linear vortex segments at each time step, x1(si, t

n), x2(si, t
n), x3(si, t

n), where s is the
arc-length and i = 0, 1, . . . , I is the segment index. The data are given at discrete
times tn, n = 0, 1, . . . . Also given is the local core radius or desingularization length,
σ(si, t

n). The lengths of the segments are kept approximately equally spaced and much
smaller than L and ρ by frequent spline interpolation. The time step is scaled on the
inverse of maximal strain rate. The core size evolves based on the local strain rate.
The plane x1 = 0 is chosen to be the beginning of the arclength: x̄2(t

n) = x2(s0 = 0, tn)
and x̄3(t

n) = x3(s0 = 0, tn). Figure 11 shows the position of the filament at a late time
in the evolution. The surface plotted is the cylinder around the filament with radius
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Figure 10. Vorticity contours (5,10,15,20 from light to dark) on the symmetry plane
with velocity vectors and streamlines.

equal to half of the core size. Note the similarity with the filaments in figure 3. It is
found that ε is about 0.44, ν is about 0.43π and µ < π/4.

In evaluating the integral of the strain rate, u1,1(0, x̄2, x̄3), the volume integral is
reduced to an arclength integral by the approximation that ω = ζΓ/(πσ2), where ζ
is the unit tangent to vortex lines and Γ is the circulation. Dividing the integrand
by the vorticity of the tube at the symmetry plane, ω(0) = Γ/(πσ2(0)), the coupling
coefficient between strain rate and vorticity at the point (0, x̄2, x̄3) is defined to be the
integral of

f(s) ≡ σ2(0)D1(x(0), x(si))ζ1(si) (5.2)

over the arclength of the filament. If the arclength integral of f is constant in time,
then vorticity and axial strain rate are linearly related.

In figure 12 a plot of the function f versus arclength/L is shown for a number of
different times during the simulation. The plot shows that the integrand is positive
and apparently converges to a particular function with time. Initially L is almost 4.6
so L decreases by four orders. (The computation required a day on a workstation
and could of course be continued.)

The integral of f in this plot is the coupling between vorticity and axial strain rate.
Trapezoidal integration yields the sequence {0.0407, 0.0675, 0.0697, 0.0686, 0.0684,
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Figure 11. Location of the vortex filament at a late time for the complete domain shown to a
radius of about 5L. The width of the tube represents one half the core radius.
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Figure 12. The integrand of the strain rate divided by the vorticity on the plane, as a function of
arclength of the filament. Different times are indicated by the decreasing L values. All quantities
are normalized by L. The integral of this curve gives the coupling coefficient.
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0.0681, 0.0680} for the times shown. Thus for the filaments, there is linear coupling
between vorticity and axial strain rate at (0, x̄2, x̄3) as t→ tcrit.

6. Discussion
This paper concerns the problem of whether finite-time blow-up solutions exist for

the equations governing the motion of an incompressible, inviscid fluid. The flow is
assumed to be invariant under the octahedral symmetry group. In addition, a compact
vortex tube was constructed to intersect (normally) with a reflectional symmetry plane
(x1 = 0). The tube has mild curvature so the vorticity is mainly in the x1-direction
as it extends across the fundamental domain. By writing the strain rate integral in
the fundamental domain only, and examining the axial strain rate on the symmetry
plane, the strain rate induced by the rotational images was shown to be proportional
to ω1, while the contributions from the fundamental and reflectional images were
not; hence, the rotational images provide a fundamentally new source of strain rate.

Estimating the contribution of the image vortices to the axial strain rate on the
fundamental using a filament model and an expansion in curvature, the strain rate
was found to be proportional to Γ/L2, where L is the distance to the origin of the
vortex tube in the symmetry plane. A collapse to the origin as L ∼ √tc − t would be
accompanied by the strain rate scaling as (tc − t)−1. It is crucial, therefore, that the
velocity field support such a collapse dynamic. Estimating the velocity using a filament
model for images and the local induction approximation (LIA) for the fundamental,
showed that there is a location for the fundamental where the velocity is only towards
the origin. Furthermore, this radial velocity scales as L−1 so that L ∼ √tc − t.

The assumptions that lead to this scaling are that curvature stays mild compared
with the distance to the origin, that the tube stays coherent and that the collapse
is self-similar locally. That the curvature stays mild is reasonable since it is shown
that large positive axial strain rate tends to decrease curvature. Coherence is also
reasonable given that strain rate is produced by an integral effect at a distance. Axial
strain rates that are positive, and in-plane strain rates induced by the rotational
images that are negative also support coherence.

It is also reasonable that the flow approaches a local self-similarity. First, the
symmetries cause a shielding of the inner region from the outer, exemplified by the
rapid fall-off of the Biot-Savart and strain rate kernels. Also, the part of the vortex
tube on and near the symmetry plane accelerates towards the origin leaving the
complementary part of the tube to align radially and asymptote to the outgoing
manifold – the diagonal. Radial vortex lines induce a flow on the sphere which further
isolates the inner region from the outer. This scenario suggests that the outer edge
of the self-similar region also collapses, which then does not violate the theorem of
Necas, Ruzicka & Sverak (1996) and possibly that of Tsai (1998) on the non-existence
of self-similar solutions for the Navier–Stokes equations.

The reliance on estimates from filament models sets the scaling to be the one
suggested by Leray (1934) for an inner solution:

u(x, t) =

√
λ√

tcrit − tU(ξ), x =
√
λ(tcrit − t)ξ, (6.1)

where U is smooth and λ is a constant with units of circulation.
In conclusion, general flows as well as those with reflectional symmetries have the

property that the axial strain rate is a function of the field of orthogonal components
of vorticity. Strain/vorticity coupling then requires severe constraints on vortex line
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curvature. By adding a rotational or permutation symmetry, axial strain rate becomes
a (non-singular) function of the full vorticity not just the orthogonal components. If
the flow approaches a self-similar collapse, the axial strain rate becomes proportional
to the vorticity and the blow-up situation Dω/Dt ∼ ω2 occurs. While there is evidence
of such a collapse from models and simulations, future analysis should concentrate on
whether such a flow with octahedral symmetry collapses locally about the degenerate
critical point.

The work also suggests that other blow-up flows may be constructed using sym-
metries. The vortex dipole, because of the strain rate field it produces and its induced
motion, is an important component (see the model of Moffatt 2000). Reflectional
symmetries produce dipoles naturally. The proper phase relation can be produced by
adding rotational symmetries. While rotation by any angle is supported, the three-fold
one may be the simplest.

Thanks to John Greene, Charles Fefferman, Olus Boratav and Yuriy Gulak for
helpful comments on the manuscript.
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